Second-order approximation scheme combined with H1-Galerkin MFE method for nonlinear time fractional convection–diffusion equation
نویسندگان
چکیده
منابع مشابه
Numerical Analysis of an H1-Galerkin Mixed Finite Element Method for Time Fractional Telegraph Equation
We discuss and analyze an H(1)-Galerkin mixed finite element (H(1)-GMFE) method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H(1)-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite di...
متن کاملNonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis
The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملApplication of high-order spectral method for the time fractional mobile/immobile equation
In this paper, a numerical efficient method is proposed for the solution of time fractional mobile/immobile equation. The fractional derivative of equation is described in the Caputo sense. The proposed method is based on a finite difference scheme in time and Legendre spectral method in space. In this approach the time fractional derivative of mentioned equation is approximated by a scheme of ord...
متن کاملA second-order difference scheme for the time fractional substantial diffusion equation
In this work, a second-order approximation of the fractional substantial derivative is presented by considering a modified shifted substantial Grünwald formula and its asymptotic expansion. Moreover, the proposed approximation is applied to a fractional diffusion equation with fractional substantial derivative in time. With the use of the fourth-order compact scheme in space, we give a fully di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2017
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2016.07.037